This paper explores the dynamic characteristics and a novel event-triggered practical prescribed-time controller for four complex coupled Duffing-type MEMS resonators. Initially, the effects of mechanical coupling stiffness, electrostatic coupling stiffness, and internal system parameters on the system's dynamic behavior are examined. The analysis results provide guidance for selecting system parameters. Furthermore, the dynamic analysis reveals that chaotic oscillations may occur in the system without input, significantly affecting system performance. To mitigate these chaotic oscillations, a novel event-triggered practical prescribed-time controller with prescribed performance is proposed, utilizing interval type-3 fuzzy system (IT3FS) to estimate unknown nonlinear functions. By employing a more relaxed practical prescribed-time stability (PPTS) criterion and a novel time-varying scale transformation function (STF), the designed controller ensures that all signals converge within a prescribed time. Additionally, a prescribed performance function (PPF) is employed, allowing for more flexible convergence boundary settings. A dynamic event-triggered mechanism is implemented to reduce the frequency of control signal updates. The stability analysis demonstrates that all signals converge within a prescribed time, and the tracking errors remain within their prescribed boundary. Finally, simulations validate the effectiveness of the proposed scheme.
Read full abstract