Abstract
The uniform stabilization of a coupled system arising in the active control of noise in a cavity with a flexible boundary (strings under thermal effects) is considered. Unlike most articles on this subject, which employ the scalar wave equation when analyzing the asymptotic behavior of structural acoustic models, in this paper, we consider classical equations in terms of flow velocity and pressure to describe the acoustic vibrations of the fluid which fills the cavity. This allows to consider, for example, more realistic boundary conditions to model the coupling on the interface between the acoustic chamber and the wall. The main result of this paper, concerning the exponential stability of the model, is established by means of the frequency domain method and the semigroup theory. This method can be adapted to other first‐order hyperbolic dissipative systems as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.