Abstract

We formulate an optimization problem to estimate probability densities in the context of multidimensional problems that are sampled with uneven probability. It considers detector sensitivity as an heterogeneous density and takes advantage of the computational speed and flexible boundary conditions offered by splines on a grid. We choose to regularize the Hessian of the spline via the nuclear norm to promote sparsity. As a result, the method is spatially adaptive and stable against the choice of the regularization parameter, which plays the role of the bandwidth. We test our computational pipeline on standard densities and provide software. We also present a new approach to PET rebinning as an application of our framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.