We study properties of the strongly repulsive Bose gas on one-dimensional incommensurate optical lattices with a harmonic trap, which can be dealt with by use of an exact numerical method through Bose-Fermi mapping. We first exploit the phase transition of hard-core bosons in optical lattices from the superfluid to the Bose-glass phase as the strength of the incommensurate potential increases. Then we study the dynamical properties of the system after suddenly switching off the harmonic trap. We calculate the one-particle density matrices, the momentum distributions, and the natural orbitals and their occupations for both the static and dynamic systems. Our results indicate that the Bose-glass and superfluid phases display quite different properties and expansion dynamics.
Read full abstract