Abstract

We present a joint experimental and theoretical analysis to assess the adiabatic experimental preparation of ultracold bosons in optical lattices aimed at simulating the three-dimensional Bose-Hubbard model. Thermometry of lattice gases is realized from the superfluid to the Mott regime by combining the measurement of three-dimensional momentum-space densities with abinitio quantum MonteCarlo (QMC) calculations of the same quantity. The measured temperatures are in agreement with isentropic lines reconstructed via QMC for the experimental parameters of interest, with a conserved entropy per particle of S/N=0.8(1)k_{B}. In addition, the Fisher information associated with this thermometry method shows that the latter is most accurate in the critical regime close to the Mott transition, as confirmed in the experiment. These results prove that equilibrium states of the Bose-Hubbard model-including those in the quantum-critical regime above the Mott transition-can be adiabatically prepared in cold-atom apparatus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.