Norbornylized seed oils, i.e., norbornylized linseed oil (NLO), norbornylized soybean oil (NSO), and norbornylized high oleic soybean oil (NHOSO), were synthesized via the Diels–Alder reaction of seed oil and dicyclopentadiene (DCPD) at high temperature (∼235 °C) and high pressure (∼80 psi), followed by cationic copolymerization using DCPD with boron trifluoride diethyl etherate catalyst. Norbornylized seed oils were characterized using H1 nuclear magnetic resonance (NMR), attenuated total reflectance-Fourier transform infrared, and gel permeation chromatography (GPC). Copolymers were formulated with four different DCPD contents, and curing was investigated using dynamic differential scanning calorimetry (DSC) measurements. It was found that the curing followed NLO > NSO > NHOSO with NLO having the highest exotherm, lowest activation energy, and lowest onset temperature. Furthermore, the gelation times were the least for NLO-DCPD copolymers. As anticipated, the degree of unsaturation and norbornene moieties strongly influenced the curing of copolymer thermosets. The copolymer products were compression-molded into thermosets and characterized by DSC, Soxhlet extraction, thermogravimetric analysis (TGA), H1 NMR, solid-state C13 NMR, and GPC. NLO-DCPD thermosets demonstrated high cure, higher thermal stability, glass transition temperature, and cross-linking capability compared to the other seed oil-DCPD counterparts. NMR and GPC results further suggested that bis-allylic and norbornene units concomitantly participated very actively during the cationic curing reaction. Moreover, scanning electron microscopy images of glass fiber-reinforced NLO-DCPD copolymer composites demonstrated good interfacial adhesion between the polymer matrix and fiber phases, imparting enhanced thermo-mechanical properties. This research opens a new venue for higher biobased greener polymer constituent for composite applications.