Experimental charge density of α-rhombohedral boron (α-B12) by a Maximum entropy method (MEM) has been re-investigated using the high resolution powder diffraction data measured at third-generation synchrotron radiation (SR) source, SPring-8. The present MEM charge density has many discrepancies from the previous MEM charge densities reported by Fujimori et al. and Hosoi et al. The data-resolution dependence of the MEM charge density was investigated using the present data. We found that diffraction data with d > 0.4 Å resolution range were needed to reveal qualitative bonding nature of α-B12 at 100 K. The peculiar bonding natures, such as a bend B–B bond and a propeller-shaped bond, which were found in the previous studies have disappeared by using d > 0.4 Å data. The bonding nature of MEM charge density using the full data with d > 0.327 Å d-spacing range is well agreed with those of theoretical calculations. The present study suggests that resolution test is important for an accurate charge density study of boron related materials.