Composite coatings have been successfully fabricated at the laboratory scale in many research centers around the world; however, it is still a major challenge to transfer the positive results of the work to the industrial scale. This paper presents the technology for the production of Ni-B and Ni-B/B composite coatings on a pilot experimental semi-technical line by chemical reduction. A process scheme for the fabrication of Ni-B layers and composite coatings with a nickel–boron matrix and a dispersive phase in the form of boron nanoparticles was developed. All stages of the fabrication process were described in detail. The dispersion phase of the boron particles was characterized, and the performance properties of the Ni-B and Ni-B/B composite coatings produced on a pilot electroplating line were studied. The structure and morphology of the Ni-B/B composite coatings were characterized for comparison with nickel–boron coatings. Their mechanical and tribological properties and adhesion to the substrate were studied. The influence of the dispersion phase of boron particles on the structure and functional properties of the composite coatings was evaluated. In order to improve the performance of the fabricated coatings, a heating process at 400 °C was carried out, and the performance of Ni-B and composite Ni-B/B coatings was studied after the heat treatment operation.