Building upon the concepts of polarization conversion and the mechanism of destructive interference, a single-layered ultra-broadband metasurface for radar cross-section (RCS) or backscattering reduction is proposed in this work. A diffusion-assisted checkerboard metasurface with re-tailored unit cells at the center leads to a significant improvement in the stealth characteristics. For this, a low profile and less complex unit cell is proposed, comprising a long metallic strip along the diagonal and two thin horizontal stubs at the edges. This unique arrangement exhibits more than 90% polarization conversion efficiency from 13.2 to 38.2 GHz. Modifying the geometry of central elements in a conventional checkerboard metasurface achieves a minimum of 15 dB RCS reduction from 10 to 38 GHz. Also, as we ascend the frequency spectrum, the beams are scattered in unintended directions with reduced signal strength. Notably, there is no beam in the boresight direction, as opposed to the conventional chessboard configurations. For off-normal incidences, the metasurface exhibits good angular stability, and a minimum of 10 dB backscattering reduction is maintained up to an incidence angle variation of 60°. The final optimized fabricated prototype exhibits measurement results that agree with the simulation results for normal and wide-angle incidences.
Read full abstract