AbstractAim Species–area relationships are often applied, but not generally approved, to guide practical conservation planning. The specific species group analysed may affect their applicability. We asked if species–area curves constructed from extensive databases of various sectors of natural resource administration can provide insights into large‐scale conservation of boreal forest biodiversity if the analyses are restricted only to red‐listed species.Location Finland, northern Europe.Methods Our data included 12,645 records of 219 red‐listed Coleoptera and Fungi from the whole of Finland. The forest data also covered the entire country, 202,761 km2. The units of species–area analyses were 224 municipalities where the red‐listed forest species have been observed. We performed a hierarchical partitioning analysis to reveal the relative importance of different potential explanatory variables. Based on the results, for all red‐listed species, species associated with coniferous trees and for Fungi, the area of economically over‐aged forests explained the best the variation in data. For species associated with deciduous trees and Coleoptera, the forest area explained better variation in data than the area of old forests. In the subsequent log–log species–area regression analyses, we used the best variables as the explanatory variable for each species group.Results There was a strong relationship between the number of all red‐listed species and the area of old forests remaining, with a z‐value of 0.45. The area explained better the number of species associated with conifer trees and Fungi than the number of species associated with deciduous trees and Coleoptera.Main conclusions The high z‐values of species–area curves indicate that the remaining old‐growth patches constitute a real archipelago for the conifer‐associated red‐listed species, since lower values had been expected if the surrounding habitat matrix were a suitable habitat for the species analysed.
Read full abstract