Given an affine algebra R=K[x1,⋯,xn]/I\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$R=K[x_1,\\dots ,x_n]/I$$\\end{document} over a field K, where I is an ideal in the polynomial ring P=K[x1,⋯,xn]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P=K[x_1,\\dots ,x_n]$$\\end{document}, we examine the task of effectively calculating re-embeddings of I, i.e., of presentations R=P′/I′\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$R=P'/I'$$\\end{document} such that P′=K[y1,⋯,ym]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P'=K[y_1,\\dots ,y_m]$$\\end{document} has fewer indeterminates. For cases when the number of indeterminates n is large and Gröbner basis computations are infeasible, we have introduced the method of Z-separating re-embeddings in Kreuzer et al. (J Algebra Appl 21, 2022) and Kreuzer, et al. (São Paulo J Math Sci, 2022). This method tries to detect polynomials of a special shape in I which allow us to eliminate the indeterminates in the tuple Z by a simple substitution process. Here we improve this approach by showing that suitable candidate tuples Z can be found using the Gröbner fan of the linear part of I. Then we describe a method to compute the Gröbner fan of a linear ideal, and we improve this computation in the case of binomial linear ideals using a cotangent equivalence relation. Finally, we apply the improved technique in the case of the defining ideals of border basis schemes.
Read full abstract