Abstract
A good way of parameterizing zero-dimensional schemes in an affine space [Formula: see text] has been developed in the last 20 years using border basis schemes. Given a multiplicity [Formula: see text], they provide an open covering of the Hilbert scheme [Formula: see text] and can be described by easily computable quadratic equations. A natural question arises on how to determine loci which are contained in border basis schemes and whose rational points represent zero-dimensional [Formula: see text]-algebras sharing a given property. The main focus of this paper is on giving effective answers to this general problem. The properties considered here are the locally Gorenstein, strict Gorenstein, strict complete intersection, Cayley–Bacharach, and strict Cayley–Bacharach properties. The key characteristic of our approach is that we describe these loci by exhibiting explicit algorithms to compute their defining ideals. All results are illustrated by nontrivial, concrete examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.