Abstract

In this paper, we consider the problem of computing all possible order ideals and also sets connected to 1, and the corresponding border bases, for the vanishing ideal of a given finite set of points. In this context, two different approaches are discussed: based on the Buchberger–Möller Algorithm [H. M. Möller and B. Buchberger, The construction of multivariate polynomials with preassigned zeros, EUROCAM ’82 Conf., Computer Algebra, Marseille/France 1982, Lect. Notes Comput. Sci. 144, (1982), pp. 24–31], we first propose a new algorithm to compute all possible order ideals and the corresponding border bases for an ideal of points. The second approach involves adapting the Farr–Gao Algorithm [J. B. Farr and S. Gao, Computing Gröbner bases for vanishing ideals of finite sets of points, in 16th Int. Symp. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC-16, Las Vegas, NV, USA (Springer, Berlin, 2006), pp. 118–127] for finding all sets connected to 1, as well as the corresponding border bases, for an ideal of points. It should be noted that our algorithms are term ordering free. Therefore, they can compute successfully all border bases for an ideal of points. Both proposed algorithms have been implemented and their efficiency is discussed via a set of benchmarks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.