Human neuraminidases play critical roles in many physiological and pathological processes. Humans have four isoenzymes of NEU, making selective inhibitors important tools to investigate the function of individual isoenzymes. A typical scaffold for NEU inhibitors is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) where C9 modifications can be critical for potency and selectivity against human NEU. To design improved DANA analogues, we generated a library of compounds with either a short alkyl chain or a biphenyl substituent linked to the C9 position through one of six amide bioisosteres. Bioisostere linkers included triazole, urea, thiourea, carbamate, thiocarbamate, and sulfonamide groups. Within this library, we identified a C9 biphenyl carbamate derivative (963) that showed high selectivity and potency for NEU3 (Ki = 0.12 ± 0.01 μM). In contrast, NEU1 and NEU4 isoenzymes preferred amide and triazole linkers, respectively. Finally, analogues with urea, sulfonamide, and amide linkers showed enhanced inhibitory activity for a bacterial NEU, NanI from Clostridium perfringens.
Read full abstract