Abstract. Thermal power engineering takes one of the first places by the scale of the impact on the environment. Thermal power plant emissions are mainly deposited on the ground. Soil compounds, binding heavy metal ions (НM) for a long time, prevent their migration. The buffer capacity of the soil for metals depends on many factors: soil composition, acidity, complexity, oxidation–reduction,sorption–desorption, etc. Examination of the HM content in the soils is necessary for monitoring the environment, its protection from pollution. One of the largest pollutants in Kharkiv region is Zmiiv TPP. The goal of the work is to find out peculiarities of heavy metal contamination of the soil near the Zmiiv TTP and develop recommendations on improving the situation. In order to reach the goal, the following tasks have been solved: features of accumulation of various heavy metals in the soils have been specified, dependence between the soils pH and presence of certain chemical elements in them has been defined, dependance between the content of contamination and development of slow soluble compounds in the soil has been studied. Research methodology. The main principle of control for soil contamination is checking of concentration compliance with the established maximum permissible concentration (MPC) and approximate permissible concentration (APC). HM concentrations in the aqueous extract from the soil were determined by the atomic-emission spectral analysis, atomic absorption analysis and by the method of capillary electrophoresis. To determine the composition of the solid inorganic part of soils X-ray phase analysis was performed. Results of research. It is established that the most polluted areas are located within 10 km from TPP. The most disseminated pollutants in the area are Cu, Br, Co, V, Cr. The soils of the Siverskyi Donets Basin retain Cu, Zn and Pb ions to a large extent. Scientific novelty. Metals V, Cr are anionogenics, acid residues are formed in slightly alkaline soils and together with HM they form insoluble or slightly soluble compounds leading to their accumulation. Compounds SrCrO4, SrCr2O7, Sr(VO3)2, Zn2V2О7, Zn3(VО4)2, Zn(VО3)2 were found in the soils. Based on the determination of the coefficients of poly-elemental contamination, it is shown that maximum concentrations of HM are higher and variations of concentrations are wider except Pd, Zn and Cd in the soils with high humus, buffering and ability to form complexes with metal ions. The correlation relationships between pH, macro- and і microelements in various soils are determined. The highest correlation coefficient is between Al concentration and pH (0.6-0.9). Practical significance. Recommendations have been developed to reduce the level of soil contamination near Zmiiv TPP: reconstruction of the boiler unit, installation of an electrostatic precipitator to collect ash, using ash and slag waste in the production of Portland cement, liming soil for discrimination of HM.