To decrease viscosity of BF slag and improve its desulfurization ability during hot metal production a magnesia oxide is used, which is introduced into a blast furnace, as a rule, within iron ore sinter, as well as in the form of a fluxing additive. Dolomite, sometimes iron ore materials with increased magnesia content (for example, Kovdor concentrate, raw or roasted Bakal siderite) as well as magnesia-contained wastes, most often BOF slag, are usually used as a main source of magnesia oxide during iron ore sinter production. Brucite, which is widely used abroad, mainly in Japan during iron ore sinter production, is a very prospective magnesia flux. However, brucite was never used in sinter production in Russia. Main parameters and efficiency of its application were obtained under Japan raw materials conditions. However sinter chemical and mineral compositions at Russian and Japanese sinter plants considerably differ. In this connection studies on influence of the magnesia flux “Flumag M”, which is identical by its composition to brucite, on the process parameters of sinter burden sintering and pellets production were carried out. The estimation of application efficiency of “Flumag M” magnesia flux was made during typical sintering of NLMK sinter burden. It was determined, that partial and complete substitution of dolomite by the “Flumag M” magnesia flux in the NLMK sinter burden results in an increase of specific productivity of sintering process by 10–20% (comparative) and the sinter strength by 3–5% (comparative) correspondently. Laboratory experiments on “Flumag M” magnesia flux application, carried out in STI NITU “MISiS”, showed, that raw pellets with magnesia flux additives have higher compressive strength comparing with the pellets having dolomite additives. Impact strength and abrasion strength of roasted pellets is higher, comparing with those with dolomite. Optimal content of “Flumag M” flux in the pellets burden is 2%. The application of “Flumag M” magnesia flux enables to remove burden from the burden and increase strength of roasted pellets.
Read full abstract