In this letter, we report a method called chemical bond manipulation for fabrication of multiperiod nanometer sized Si/SiO2/Ge layered structure. Chemical bond manipulation is a self-organization process which involves selective breaking and making of surface chemical bonds and thereby enable formation of the desired species on a full wafer scale. We show that oxygen of germanium oxide layer formed on Si(111) are picked up by the Si atoms arriving at the surface during subsequent growth. This phenomenon involves breaking of Ge–O bonds and making of Si–O bonds and leads to the formation of ultrathin Si and Ge layers sandwiched between ultrathin silicon oxide layers, preserving the original wafer morphology. This material exhibits blue-green light emission at room temperature when excited by ultraviolet laser.
Read full abstract