We previously described a bloodstream Trypansoma rhodesiense clone, MVAT5-Rx2, whose isolation was based on its cross-reactivity with a monoclonal antibody (MAb) directed against a metacyclic variant surface glycoprotein (VSG). When the duplicated, expressed VSG gene in MVAT5-Rx2 was compared with its donor (basic copy) gene, 11 nucleotide differences were found in the respective 1.5-kb coding regions (Y. Lu, T. Hall, L. S. Gay, and J. E. Donelson, Cell 72:397-406, 1993). Here we describe a characterization of two additional bloodstream trypanosome clones, MVAT5-Rx1 and MVAT5-Rx3, whose VSGs are expressed from duplicated copies of the same donor VSG gene. The three trypanosome clones each react with the MVAT5-specific MAb, but they have different cross-reactivities with a panel of other MAbs, suggesting that their surface epitopes are similar but nonidentical. Each of the three gene duplication events occurs at a different 5' crossover site within a 76-bp repeat and is associated with a different set of point mutations. The 35, 11, and 28 point mutations in the duplicated VSG coding regions of Rx1, Rx2, and Rx3, respectively, exhibit a strand bias. In the sense strand, of the 74 total mutations generated in the three duplications, 54% are A-to-G or G-to-A (A:G) transitions and 7% are C:T transitions, while 26% are C:A transversions and 13% are C:G transversions. No T:G or T:A transversions occurred. Possible models for the generation of these point mutations are discussed.