Abstract

The major surface antigen of insect stage (procyclic and epimastigote form) Trypanosoma brucei is termed procyclin or procyclic acidic repetitive protein (PARP). Procyclin/PARP is not expressed in bloodstream form parasites, which are coated instead with the variant surface glycoprotein (VSG). Although procyclin/PARP protein is not present and the mRNA is barely detectable, procyclin/PARP genes are transcribed at this life cycle stage. We examined the mechanism for down-regulation of procyclin/PARP expression in bloodstream trypanosomes by using protein synthesis inhibitors to effect accumulation of procyclin/PARP transcripts. We show that the accumulation is not due to increased transcription of procyclin/PARP genes. Further, transcripts which accumulate under these conditions are of mature size, polyadenylated and polysome-associated indicating that normally, in bloodstream trypanosomes, down-regulation of procyclin/PARP expression is exerted either during transcript processing or at the level of mRNA stability. A comparison of the inhibitor-induced accumulation of procyclin/PARP transcripts in bloodstream forms of monomorphic and pleomorphic cell lines of trypanosome stock EATRO 795 shows that accumulation occurs with similar kinetics in both cell lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call