BackgroundThe Qilong capsule (QLC) is a Chinese patented medicine characterized by an equal emphasis on replenishing Qi and activating blood circulation. In 2000, China's FDA approved the use of QLC for ischemic stroke (IS). However, there is not yet much high-quality evidence of the clinical effectiveness of QLC combined with conventional treatment (CT) for IS with Qi deficiency and blood stasis syndrome. PurposeIn this study, we conducted a prospective, multicenter, non-randomized controlled trial at 7 hospitals in China to investigate the clinical effectiveness of QLC combined with CT for IS with Qi deficiency and blood stasis syndrome. MethodsParticipants aged 35 to 80 years old diagnosed as IS with Qi deficiency and blood stasis syndrome in TCM were recruited. Participants were treated with QLC (intervention group) or non-QLC (control group). The intervention course of QLC was 12 weeks. All participants in two groups received standard treatment. All participants returned for in-person follow-up visits at the 12th week and 24th week. Primary outcome measures included a modified Rankin Scale (mRS), the National Institute of Health Stroke Scale (NIHSS), and the Barthel Index (BI). Secondary outcome measures included TCM syndromes (Qi deficiency syndrome score, blood stasis syndrome score), psychological index (self-rating depression scale, SDS; self-rating anxiety scale, SAS), blood lipid index, blood coagulation index, homocysteine, and favorable functional outcome (mRS 0 – 3). Multiple imputations were used for any missing data. Propensity score matching (PSM) was used to deal with any confounding factors (age, gender, scale score, etc.). Rank alignment transformation variance analysis (ART ANOVA) and generalized linear mixed model (GLMM) were introduced to improve the scientific and accuracy of repeated measurement data. All statistical calculations were carried out with R 3.6.1 statistical analysis software. ResultsA total of 2468 participants were screened from November 2016 to January 2019. Finally, 2302 eligible participants were included in the analysis. There were 1260 participants in the intervention group (QLC group) and 1042 participants in the control group (non-QLC group). After PSM matching, sub-samples of 300 participants in the QLC group and 300 participants in the non-QLC group were finally formed. The final results of clinical effectiveness are the same results shared by the total samples and sub-samples after PSM. In the 24th week after treatment, QLC combined with CT proved to be significantly better than CT alone in reducing the scores of mRS (p < 0.05), NIHSS (p < 0.001), Qi deficiency syndrome (p < 0.01), and blood stasis syndrome (p < 0.001), SAS (p < 0.05), as well as in improving BI score (p < 0.05). The favourable functional outcome (mRS score of 0 to 3 at week 12) was statistically different between QLC and non-QLC group in the sub-samples (p < 0.01, 97% vs 91.7%). The results of the ART ANOVA showed that the improvement of mRS (p < 0.01), BI (p < 0.05) and NIHSS (p < 0.001) in QLC group was better than non-QLC group when the interaction effect was considered. The results of GLMM showed that the reduction of mRS and NIHSS scores of patients in the QLC group were better than those of the non-QLC group (p < 0.001). The BI score of the QLC group in the sub-samples after PSM increased more than the non-QLC group (p < 0.001). There was no evidence showing that QLC can cause serious adverse reactions (ADRs) in treating patients with IS. ConclusionQLC combined with CT was better than CT alone in reducing mRS score, NIHSS score, Qi deficiency syndrome score, blood stasis syndrome score, and SAS score, as well as improving BI score after treatment. Further high-quality RCTs are needed to confirm the positive results. The study protocol was embedded in a registry study that registered in the Clinical Trials USA Registry (registration No. NCT03174535).