Abstract

Hemorrhage during accidents or surgery is a significant challenge that can contribute to mortality. This is further aggravated due to bacterial infections at the injured site. Therefore, rapid application of a hemostatic and antibacterial material is highly necessary as a pretreatment for patients' survival. Herein, we have developed a hemostatic sponge (Hemobac) through amide crosslinking of gelatin and an N-(2-hydroxy) propyl-3-trimethylammonium chitosan (HTCC)-silver chloride nanocomposite (QAm1-Ag0.1) to mitigate bacterial infections, while aiding hemostasis. This Hemobac sponge completely eradicated (∼4-5 log) a wide range of Gram-positive and Gram-negative bacteria encompassing various clinical isolates within 6 h. The antihemorrhagic ability of Hemobac was ascertained through SEM images, which exhibited the presence of agglomerated blood cells onto the sponge with a significantly low blood-clotting index value (∼23 ± 1). Notably, Hemobac reduced the blood loss by ∼70-80% in the liver puncture model and femoral vein injury model in mice, displaying its improved hemostatic ability over a marketed gelatin-based sponge. Negligible hemolytic activity (∼6%) and retained healthy morphology of mammalian cells were observed upon exposure to the Hemobac sponge. Minimal immune response was noticed at the Hemobac-treated wound in mice through histopathology analysis. Collectively, these findings indicate that this biocompatible Hemobac sponge can stop the bleeding instantaneously and combat bacterial infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call