Wireless communications often exploit guard intervals between data blocks to reduce interblock interference in frequency-selective fading channels. Here we propose a dual-branch transmission scheme that utilizes guard intervals for blind channel estimation and equalization. Unlike existing transmit diversity schemes, in which different antennas transmit delayed, zero-padded, or time-reversed versions of the same signal, in the proposed transmission scheme, each antenna transmits an independent data stream. It is shown that for systems with two transmit antennas and one receive antenna, as in the case of one transmit antenna and two receive antennas, blind channel estimation and equalization can be carried out based only on the second-order statistics of symbol-rate sampled channel output. The proposed approach involves no preequalization and has no limitations on channel-zero locations. Moreover, extension of the proposed scheme to systems with multiple receive antennas and/or more than two transmit antennas is discussed. It is also shown that in combination with the threaded layered space-time (TST) architecture and turbo coding, significant improvement can be achieved in the overall system performance.
Read full abstract