Abstract

Blind channel-estimation algorithms return phase-ambiguous estimates. From a receiver design point of view, the phase-ambiguity problem can be by-passed by differential modulation and detection at the expense of a well-known performance loss, in comparison with direct modulation and coherent detection schemes. An alternative approach is followed in this paper. A theoretical minimum mean-square error phase-estimation criterion leads to a supervised phase-recovery procedure that directly corrects the phase of arbitrary linear filter receivers through a simple closed-form projection operation. Conveniently, any known blind channel-estimation algorithm can be used to provide the initial phase-ambiguous estimate. The presentation is given in the context of adaptive space-time receiver designs for binary phase-shift keying direct-sequence code-division-multiple-access antenna array systems. Numerical and simulation studies support the theoretical developments and show that effective phase correction and multiple-access interference suppression can be achieved with about 2% pilot signaling

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.