The improvement of safety conditions on hazardous rock slopes in civil work, mining and quarrying, and urban environments can be achieved through the use of explosives for the removal of unstable rock elements and final profiling. This technique is often applied because, in most cases, drill and blast operations, where they can be used, are cheaper and faster than other techniques and require fewer subsequent maintenance interventions. Blasting represents a suitable and effective solution in terms of different geometries, rock formation types, access to site, safety, and the long-term durability of results. The primary purpose of this approach is the improvement of the safety conditions of sites, depending on their local features, as well as the safety of workers, so that the blasting scheme, geometry, and firing can be carefully adapted, thus imposing relevant limitations on the operating techniques. All these constraints associated with complex logistics make it difficult to standardize the demolition technique, due to different situations in terms of extension, location, fracturing state, and associated traffic risk. Considering the significant number of influencing factors for both the rock mass features and for the topography, the present research has been necessarily validated through the analysis of several case histories, thus on an experiential basis focusing on some simple control parameters to help engineers and practitioners regarding the first design and control of blasting schemes.
Read full abstract