Abstract

Blasting operations in open-pit mines generally have various management strategies relating to flyrock. There are empirical models for calculating the flyrock distance, but due to the complexity and uncertainty of rock properties and their interactions with blasting properties, there are still no models that can predict the flyrock distance that may be applicable across mining operations in general. In this regard, the Jajarm bauxite mine complex was used as a case study. The purpose of this study was to develop and evaluate different methods that can predict flyrock distance. For this purpose, soft computing models were developed using generalized regression neural network (GRNN), gene expression programming (GEP) and genetic-algorithm-based GRNN (GA-GRNN) methods. To obtain statistical models, multivariable regression was applied in the form of linear and nonlinear equations. A flyrock index was introduced using a classification system developed by incorporating fuzzy decision-making trial and evaluation methods (fuzzy DEMATEL). In order to achieve this goal, the data of 118 blasts in eight mines of the Jajarm bauxite complex were collected and used. Following this, four performance benchmarks were applied: the coefficient of determination (R2), variance accounted for (VAF), root-mean-square error (RMSE) and mean absolute percentage error (MAPE). The performance of the models was evaluated, and they were compared with each other as well as with the most common previous empirical models. The obtained results indicate that the GA-GRNN model has a higher performance in predicting the flyrock distance in actual cases compared to the other models. At first, data on factors that were the main cause of flyrock (and had a direct impact on it) were collected and classified from different blasts. Then, using the collected data, 19 different combinations were established, which can be used to provide the appropriate predictive equation. The purpose of this work is to more accurately predict flyrock and prevent heavy damage to buildings and mining machines across the mining complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call