Abstract

Pathfinding algorithms allow for the numerical determination of optimal paths of travel across many applications. These algorithms remain poorly defined for additional consideration of outside parameters, such as fluid flow, while considering contaminant transport problems. We have developed a pathfinding algorithm based on the A* search algorithm which considers the effect of fluid flow behaviors in two dimensions. This search algorithm returns the optimal path between two points in a setting containing impermeable boundaries, allowing for a computational approach to the determination of the most likely path of travel for contaminants or hazards of concern due to fluid flow. This modified A* search algorithm has applications in the statistical modeling of airborne contamination distributions, providing a relative estimate of the statistical relationship between two points in an underground mine’s ventilation system. This method provides a significant improvement to the spatial resolution of minimum-cost path methods currently in use in mine ventilation network software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.