Gas–liquid multiphase pumps are critical transportation devices in the petroleum and chemical engineering industries, and improving their conveyance efficiency is crucial. This study investigates the influence of blade tip clearance variations on the flow characteristics within a multiphase pump. Numerical simulations were conducted using Eulerian two-phase and SST k-ω turbulence models with four distinct tip clearance sizes (0 mm, 0.3 mm, 0.6 mm, and 0.9 mm). The performance curve, tip leakage flow (TLF), and internal gas distribution were subjected to analysis. The results indicate that the TLF is linearly related to the clearance size and traverses multiple flow passages, resulting in energy losses and a reduced pump head coefficient. Larger tip clearances (0.6 mm and 0.9 mm) exhibited a more uniform flow pattern, contrasting the irregularities seen with a 0.3 mm clearance. Compared to no tip clearance (0 mm), gas holdup within the impeller passages decreased by 18.39%, 39.62%, and 58.53% for clearances of 0.3 mm, 0.6 mm, and 0.9 mm, respectively, leading to decreased overall system efficiency. This study highlights the connection between tip clearance size and flow dynamics in multiphase pumps, offering insights for optimal tip clearance selection during multiphase pump design.