One-year-old liners of Encore® azalea ‘Chiffon’ (Rhododendron sp.) were transplanted in Apr. 2013 into two types of one-gallon containers: black plastic container and paper biodegradable container. Azalea plants were fertilized with 250 mL of nitrogen (N) free fertilizer solution twice weekly plus N rate of 0, 5, 10, 15, or 20 mm from ammonium nitrate (NH4NO3). All plants were irrigated with the same total volume of water through one or two irrigations daily. Plant growth and N uptake in response to N fertilization, irrigation frequency, and container type were investigated. The feasibility of biodegradable paper containers was evaluated in 1-year production of Encore® azalea ‘Chiffon’. Paper biocontainers resulted in increased plant growth index (PGI), dry weights (leaf, stem, root, and total plant dry weight), leaf area, and root growth (root length and surface area) compared with plastic containers using N rates from 10 to 20 mm. Biocontainer-grown plant had more than twice of root length and surface area as plastic container–grown plant. Leaf SPAD reading increased with increasing N rate from 0 to 20 mm. One irrigation per day resulted in greater PGI, root dry weight, root length, root surface area, and root N content than two irrigations per day. Higher tissue N concentration was found in plants grown in plastic containers compared with those grown in biocontainers when fertilized with 15 or 20 mm N. However, N content was greater for plants grown in biocontainers, resulting from greater plant dry weight. The combinations of plastic container and one irrigation per day and that of 20 mm N and one irrigation per day resulted in best flower production, 21.9 and 32.2 flowers per plant, respectively. Biocontainers resulted in superior vegetative growth of azalea plant compared with plastic containers with sufficient N supply of 10, 15, and 20 mm.
Read full abstract