With the empowerment of wireless networking technologies and medical sensors, WBAN is playing a major part in modern medical systems. As a key application of IoT, WBAN has shown swift growth and adoption in recent years because of its capabilities such as continuous and seamless monitoring of patients and collection of their biomedical data in real-time which is further used by doctors for clinical diagnosis and treatment. Despite numerous benefits, WBAN lacks a clear in-depth defense line because of the vulnerability caused by its openness and mobility raising issues like privacy leakage, complicated requirements and security concerns from unauthenticated or malicious adversaries. To alleviate the aforementioned issues and prevent adversaries from intimidating legitimate users or exploiting WBAN services, a secured energy-efficient mutual authentication, and key agreement scheme (SEEMAKA) for two-tier WBAN is propounded. In particular, SEEMAKA achieves desirable security features and thwarts different security attacks using fewer hash invocations and bitwise XOR operations, nicely meeting the need for sensor nodes equipped with limited capability. More importantly, the security of SEEMAKA is assessed through sound informal analysis as well as using Automated Validation of Internet Security Protocols and Applications (AVISPA). For verifying the correctness of SEEMAKA, widely-accepted Burrows–Abadi–Needham (BAN) Logic is used. For a better understanding, SEEMAKA is evaluated over NS2 along with counterpart schemes for End-to-End Delay and Throughput. Finally, a set of thorough relative analyses between SEEMAKA and other relevant schemes are performed and the outcomes manifest that SEEMAKA attains superior efficiency concerning processing overhead, energy dissipation, and security features. Relative to Li et al.’s scheme, SEEMAKA outperforms with a reduction of 2 XOR operations in processing cost at master node, includes master key update phase (to make the system safe from master node spoofing attack) and counters sensor node spoofing attack.
Read full abstract