Integrating image sensors’ imaging capabilities into the receiver for visible light communication is a prominent characteristic of optical camera communication (OCC). However, the exposure effect during imaging distorts received waveforms and introduces inter-symbol interference (ISI), leading to decreased OCC reliability. This paper aims to provide an in-depth analysis of the impact of image sensor exposure effects on the error performance of OCC systems. Analytical expressions of the pixel signal-to-interference and noise ratio (PSINR) are derived using the pulse response function (PRF) for an on-off keying (OOK) modulated OCC system with varying exposure times. Furthermore, the bit error rate (BER) performance is evaluated analytically using PSINR, and a straightforward BER measurement scheme is proposed for experimental validation. Results from analyses and experiments conducted under different exposure times indicate that longer exposures lead to increased ISI and decreased PSINR, thereby increasing the error probability of data demodulation. Additionally, a combined impact of noise and exposure on OCC system reliability is observed, highlighting noise-limited and interference-limited characteristics under low and high signal-to-noise ratio (SNR) conditions, respectively. By utilizing PSINR as a bridge, this paper precisely analyzes OCC system reliability under exposure effects, laying a theoretical foundation for system design and optimization.
Read full abstract