AbstractWith the addition of sufficient hydroquinone to completely suppress the free radical polymerization, the kinetics of Michael addition polymerizations of N,N′‐bismaleimide‐4,4′‐diphenylmethane (BMI) and barbituric acid (BTA) with BMI/BTA = 2/1 (mol/mol) in 1‐methyl‐2‐pyrrolidone was investigated independently. A mechanistic model was developed to adequately predict the polymerization kinetics before a critical conversion (ca. 60%), at which point the diffusion‐controlled polymer reactions started to predominate in the latter stage of polymerization. The Michael addition polymerization rate constants and activation energy in the temperature range 383–423 K were determined accordingly. Beyond the critical conversion, a relatively stationary limiting conversion (ca. 69%) independent of the reaction temperature was achieved. A diffusion‐controlled polymerization model taken from the literature satisfactorily predicted the limiting conversion data. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers
Read full abstract