Abstract

AbstractThe synthesis and characterization of the vinyltriethoxysilane‐modified silica nanoparticles were investigated. It was shown that the vinyltriethoxysilane molecules had been successfully grafted onto the silica nanoparticles. The native and silane‐modified silica dispersions in N‐methyl‐2‐pyrrolidone with the total solids contents within the range 1–6 wt % exhibited dramatically different flow behaviors. The polymerization of N,N′‐bismaleimide‐4,4′‐diphenylmethane (BMI) initiated by barbituric acid in the presence of the native or vinyltriethoxysilane‐modified silica nanoparticles were then carried out in γ‐butyrolactone (total solids content = 20%). The higher the level of silica, the better the thermal stability of the BMI/silane/silica composite particles. The silane‐modified silica particles significantly improved their dispersion capability within the continuous BMI oligomer matrix. Furthermore, the degree of dispersion of the vinyltriethoxysilane‐modified silica particles in the BMI oligomer matrix decreased with the weight percentage of silica based on total solids increased from 20 to 40 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: Sci 103: 3600–3608, 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.