A snapshot multi-wavelength birefringence imaging measurement method was proposed in this study. The RGB-LEDs at wavelengths 463 nm, 533 nm, and 629 nm were illuminated with circularly polarized light after passing through a circular polarizer. The transmitted light through the birefringent sample was captured by a color polarization camera. A single imaging process captured light intensity in four polarization directions (0°, 45°, 90°, and 135°) for each of the three RGB spectral wavelength channels, and subsequently measured the first three elements of Stokes vectors (S0, S1, and S2) after the sample. The birefringence retardance and fast-axis azimuthal angle were determined simultaneously. An experimental setup was constructed, and polarization response matrices were calibrated for each spectral wavelength channel to ensure the accurate detection of Stokes vectors. A polymer true zero-order quarter-wave plate was employed to validate measurement accuracy and repeatability. Additionally, stress-induced birefringence in a PMMA arch-shaped workpiece was measured both before and after the application of force. Experimental results revealed that the repeatability of birefringence retardance and fast-axis azimuthal angle was better than 0.67 nm and 0.08°, respectively. This approach enables multispectral wavelength, high-speed, high-precision, and high-repeatability birefringence imaging measurements through a single imaging session.
Read full abstract