Abstract

Tomographic diffractive microscopy (TDM) based on scalar light-field approximation is widely implemented. Samples exhibiting anisotropic structures, however, necessitate accounting for the vectorial nature of light, leading to 3-D quantitative polarimetric imaging. In this work, we have developed a high-numerical aperture (at both illumination and detection) Jones TDM system, with detection multiplexing via a polarized array sensor (PAS), for imaging optically birefringent samples at high resolution. The method is first studied through image simulations. To validate our setup, an experiment using a sample containing both birefringent and non-birefringent objects is performed. Araneus diadematus spider silk fiber and Pinna nobilis oyster shell crystals are finally studied, allowing us to assess both birefringence and fast-axis orientation maps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call