The biphasic calcium phosphate (BCP) concept was introduced to overcome disadvantages of single phase biomaterials. Different composition ratios of BCP bioceramics have been studied, yet controversies regarding the effects of ratio on biomaterial behavior still exist. In this study, BCP scaffolds were prepared from nano hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) that were synthesized via a solid state reaction. Three different composition ratios of pure BCP and collagen-based BCP scaffolds (%HA/%β-TCP; 30/70, 40/60, and 50/50) were produced using a polymeric sponge method. Physical and mechanical properties of all materials and scaffolds were investigated. SEM showed overall distribution of both macropores (80-200 μm) and micropores (0.5-2 μm) with high interconnected porosities. Total porosity of pure BCP (90% ± 3%) was found to be higher than collagen-based BCP (85% ± 2%). It was observed that following sintering process, dimensional shrinkage of large scaffolds (39% ± 4%) was lower than small ones (42% ± 5%) and scaffolds with high HA ratios (50%) experienced higher dimensional changes than those with higher β-TCP (70%) ratios (45% ± 3% and 36% ± 1%, respectively). Compressive strength of both groups was less than 0.1 MPa and collagen coating had almost no influence on mechanical behavior. Further studies may improve the physical properties of these scaffolds and investigate their exact biological behaviors.
Read full abstract