Abstract

Porous HA/β-TCP biphasic calcium phosphate (BCP) bioceramics were prepared by microwave plasma in order to solve the problems on sintering of Ca-P bioceramics by a conventional furnace. The plasma-sintered samples exhibit a higher densification rate, smaller grain size and higher compressive strength compared to those of conventional sintered samples. The [Ca2+] concentration and the dissolution rate are also higher than those of conventional sintered samples in physiological saline. After immersed in simulated body fluid (SBF) and simulated inflammation body fluid, the amount of bone-like apatite formed on plasma-sintered samples is more than that formed on conventional sintered samples. The results indicate that plasma sintered porous BCP bioceramics have better mechanical properties and may also have better biological properties. On the other hand, the surface of samples that underwent a simulated inflammation procedure is smoother and the amount of bone-like apatite formed on them is less than that formed on the samples immersed in normal SBF all the time, which may indicate that the light acid in an inflammation response would affect the bone reconstruction when Ca-P bioceramics implanted in living body.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.