Background: In recent years, biological precursor-based synthesis, particularly plant-based green synthesis, has piqued interest in the field of nanotechnology. The plant-based approach is a promising technique for the biosynthesis of nanoparticles. 
 Aim of the study: Biosynthesis nanoparticles (AgNPs) using the ethanolic extract of a resin exuded from Ferula asafoetida (resin) and evaluate its anti actinobacterial, and antioxidant properties. 
 Method: Ferula asafoetida resin was collected and processed for ethanolic extraction by soxhlet apparatus. Preliminary phytoconstituents were quantified by GC MS and NMR. Consequently, the biosynthesis of silver nanoparticles was carried out with ethanolic extract. Characterization studies of synthesized Asafoetida AgNPs were done by UV Vis spec, XRD and SEM. Bioactivity of As-AgNPs was evaluated for anti-actinobacterial activity against selected Streptomyces toxytricini D2, Streptomyces tritici D5 and antioxidants properties were proved by Antioxidant assays. 
 Result: Ferula asafoetida resin ethanolic extract can be successfully used for the biosynthesis of Ag NPs. It showed excellent antioxidant activity, including DPPH and hydroxyl radical scavenging abilities comparable to standard ascorbic acid antioxidants. Characterized silver nanoparticles have moderate antimicrobial properties.
 Conclusion: Currently, the biosynthesis of silver nanoparticles has fostered the development of a new generation of nanoproducts as well as increased scientific promise in the nanomaterial field. Asafoetida based AgNPs as novel materials can be utilized by antioxidant, antimicrobial inhibition
Read full abstract