Abstract

Plant-mediated synthesis of silver nanoparticles (Ag NPs) is a green and economically viable method, which can offer numerous benefits over traditional chemical and physical methods. In this paper, three fruit extracts (tomato, orange, and grapefruit) served simultaneously as stabilizing and reducing agents during the biosynthesis of Ag NPs. The formation of Ag NPs, were monitored using the UV–visible absorption spectra of Ag NPs which exhibited three distinct bands centered at 439, 413, and 410 nm. SEM and TEM analysis indicated that these bands corresponded to three distinct spherical-shaped Ag NPs having average particle sizes of 73, 24, and 31 nm, respectively. XRD and EDS spectral analyses were used to verify the degree of crystallinity, nanostructure, and presence of Ag NPs. Advanced analysis using XPS, FTIR, and GC-MS indicated that the Ag NPs were coated with a variety of organic compounds including acids, aldehydes, esters, and ketones, indicating that fruit derived phytochemicals had a significant role in synthesis, and subsequently a mechanism of Ag NPs formation was proposed. The fabricated nanoparticles were also successfully used in Fenton-like oxidation for the environmental remediation of estrone and estriol, with removal efficiencies of 52.1 and 35.9%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call