Phenanthrene (Phe), a polycyclic aromatic hydrocarbon with low molecular weight, is detected in the environment at high frequency. To study the toxic effects of Phe on the uterine structure and function, female Kunming mice were exposed to Phe (0.05, 0.5, 5ng/mL) for 270days by drinking water. Pathological alterations and their action pathways were analyzed using immunohistochemical and biomolecular technology. Phe significantly increased the percentage of blood vessel area, the number of endometrial neutrophils (indicating the occurrence of inflammation), collagen deposition (indicating fibrosis), and the percentage of Ki-67-positive cells (indicating carcinogenesis) in the uterus. Transcriptome sequencing identified differentially expressed genes that were mainly enriched in some signaling pathways, including inflammation and carcinogenesis, suggesting a carcinogenic risk in the Phe-exposed uterus. Elevated serum estrogen levels and decreased progesterone levels exhibited a disturbance of steroid hormone balance, which might be related to uterine damage. Upregulated protein levels of uterine androgen receptor and estrogen receptor α were linked to the pathological effects. Most of the effects exhibited a nonmonotonic dose response, which might be attributed to the corresponding change in the serum levels of Phe. The results suggest that exposure to low levels of Phe could exert adverse effects on the uterus.
Read full abstract