The presence of non-biomedical foreign objects (NBFO), such as coins, buttons and jewelry, and biomedical foreign objects (BFO), such as medical tubes and devices in chest X-rays (CXRs), make accurate interpretation difficult, as they do not indicate known biological abnormalities like excess fluids, tuberculosis (TB) or cysts. Such foreign objects need to be detected, localized, categorized as either NBFO or BFO, and removed from CXR or highlighted in CXR for effective abnormality analysis. Very specifically, NBFOs can adversely impact the process, as typical machine learning algorithms would consider these objects to be biological abnormalities producing false-positive cases. It holds true for BFOs in CXRs. This paper examines detailed discussions on numerous clinical reports in addition to computer-aided detection (CADe) with diagnosis (CADx) tools, where both shallow learning and deep learning algorithms are applied. Our discussion reflects the importance of accurately detecting, isolating, classifying, and either removing or highlighting NBFOs and BFOs in CXRs by taking 29 peer-reviewed research reports and articles into account.
Read full abstract