Wildfires play an important ecological role in fire-adapted landscapes throughout California. However, there is a growing awareness that large wildfires in increasingly populated areas incur costs that may not be acceptable to society. Various forest management strategies have been proposed that seek to reduce the prevalence and severity of wildfires in areas where these costs are high. In this study we estimate the financial costs of various hypothetical forest management scenarios in the Lake Tahoe West landscape of Northern California. The objective of the study was to quantify trade-offs and cost constraints that would affect the feasibility of each scenario. The scenarios ranged from minimal forest management to several options for more intensive fuels management that relied to varying degrees on thinning and prescribed burning. We assessed stand-level costs associated with thinning, prescribed burn management, and timber and biomass transport, as well as revenues from timber and energy chips sold. Using modeled fire occurrence and severity metrics, we also used historical wildfire data to estimate plausible fire suppression costs. Our findings suggest that increased forest management, through the use of either hand/mechanical treatments or prescribed fire, can reduce fire suppression costs relative to recent practices by more than US$400,000 per year. These more intensive management scenarios differ in their cost-effectiveness. Scenarios that increase the use of prescribed fire appear to be the more cost-effective management interventions available with annual costs roughly half as much as a scenario focused on increased hand and mechanical thinning. The results are useful for understanding the financial implications of modifying forest management practices designed to lower the private and social costs of wildfire in the region.