Nonmuscle invasive (NMI) urothelial cancer (UC) is associated with varied biological potential. It is characterized by frequent recurrence and progression, which thus worsens the oncological outcome. Nearly three-quarters of NMI UCs recur within 5 years, whereas half can progress during follow-up. Progression is particularly seen in T1 and carcinoma in situ (CIS). Undoubtedly, NMI UC is one of the most expensive cancers to manage. The European Organisation for Research and Treatment of Cancer (EORTC) risk calculator is a commonly used tool for assessing the recurrence and progression potential of a newly diagnosed cancer. The parameters used in the assessment are tumor size and number, pathological stage and grade of the cancer, presence of CIS, and prior recurrence rate. The main advantages of the EORTC tool are its ease of use and the lack of need to run expensive molecular tests. However, reproducibility of pathologic stage and grade is modest, which is a concern to clinicians. Molecular markers have potential for predicting the clinical outcome of NMI UC, given that clinico-pathologic variables are not sufficient for prediction of prognosis in an individual. Significant work has been done in the past 2 decades in understanding the molecular biology of bladder cancer; however, the translational value of this knowledge remains poor. The role for molecular markers in predicting recurrence seems limited because multifocal disease and incomplete treatment are probably more important for recurrence than the molecular features of a resected tumor. Urinary markers have very limited value in prognostication of bladder cancer and are used (mainly as an adjunct to cytology) for detection and surveillance of urothelial cell cancer recurrence. Prediction of progression with molecular markers holds considerable promise. Nevertheless, the contemporary value of molecular markers over clinico-pathologic indexes is limited.