14596 Background: Treating prostate cancer through the expression of intrinsic biologic modifiers is a relatively unexplored aspect of prostate cancer therapy. Plasminogen Activator Inhibitor-1 (PAI-1) is expressed at low levels in prostate cancer cells. PAI-1 is both an anti-angiogenesis agent, and also potently inhibits tumor proteases responsible for tumor invasion and metastases such as uPA and tPA. Thus we hypothesized that stimulation of tumor endogenous PAI-1 would result in a particularly powerful and profound prostate cancer regression. We present proof-of-concept from our experimental models that demonstrate significant tumor regression in experimental prostate tumors and supports this hypothesis. Methods and Results: Human prostate adenocarcinoma (PC3 cell line) xenograft tumors engineered to conditionally express either PAI-1 or Green Fluorescent Protein (GFP, control) were used to test our hypothesis. Stable cell lines were created that conditionally express either GFP or PAI-1 under the regulation of a doxycycline-responsive promoter (Tet-On). Thus gene expression is switched on in the presence of doxycycline. PC3 tumors were inoculated and allowed to reach at least 200 mm3 in size whereby the tumor-bearing mice were given doxycycline-doped drinking water. Genes were significantly turned on within 48 hours as monitored by the appearance of a GFP signal in control mice. The induction of PAI-1 results in significant inhibition of tumor growth as compared to GFP control. Importantly, in vitro induction of PAI-1 expression in PC-3 has no direct effects on cell growth as compared to any PC-3 control. Histological analysis of these tumors revealed a rich nexus of fine angiogenic vessels at the interface between control tumors and surrounding stroma. PAI-1 secreting tumors were significantly smaller and were pale, bland, and lacked peritumoral vessels. Protease activity measured by in-situ zymography directly on these tumors revealed that this was significantly reduced in PAI-1 expressing tumors as compared to GFP controls. Conclusion: PAI-1 expression results in tumor inhibition through direct anti-angiogenic effects and inhibition of tumor protease activity. No significant financial relationships to disclose.
Read full abstract