This study was performed to examine the potential of photodynamic inactivation for growth inhibition of green algae through generation of singlet oxygen. Two cationic and two anionic corroles were investigated according to their photoinhibitive effect on two strains of green algae using visible light for photoexcitation. The development of biomass over the experimental period of 18 days was followed using absorptive properties of the algae samples. The anionic photosensitizers showed no significant phototoxicity, whereas the cationic photosensitizers caused a drastic reduction of biomass on a short time scale and also displayed long-term inhibition of algae growth. In general, it was proven that photodynamic inactivation of green algae is possible. Concluding from the results of this study, cationic photosensitizers are favourable for this task, while anionic photosensitizers are not suited. Phototrophic biofilms are an important factor in biofouling and biodeterioration of building materials, causing great damage to historic and contemporary constructions. Growth inhibition of phototrophic organisms using photodynamic inactivation could pose an alternative to the use of biocides. To this end, successful application of this approach on green algae is a vital step in the development of suitable photosensitizers.