The interest in the development of biobased adhesives has increased due to environmental concerns. Moreover, as the production of engineered wood products (EWPs) is expected to grow, the wood adhesives market needs to transit toward formaldehyde-free products. Cellulose nanoparticles (CNPs) are a material with unique properties and advantages for producing hybrid materials as biobased wood adhesives. Besides their traditional use as reinforcing additives, CNPs can be incorporated at the beginning of the polymerization reaction to form in situ polymerized hybrid adhesives with better mechanical and physicochemical properties than the neat adhesive. Despite their outstanding characteristics, CNPs are still an emerging nanomaterial in the wood adhesive field, and the studies are incipient. This review explores the utilization of CNPs in heterogeneous polymerization for the production of polyvinyl acetate, polymeric isocyanates, waterborne polyurethane systems, and other waterborne polymer latexes. The main challenges are discussed, and some recommendations are set down for the manufacture of these novel hybrid nanocomposites.