Aptamers are short oligonucleotides capable of binding specifically to various targets (i.e., small molecules, proteins, and whole cells) which have been introduced in biosensors such as in the electrochemical aptamer-based (E-AB) sensing platform. E-AB sensors are comprised of a redox-reporter-modified aptamer attached to an electrode that undergoes, upon target addition, a binding-induced change in electron transfer rates. To date, E-AB sensors have faced a limitation in the translatability of aptamers into the sensing platform presumably because sequences obtained from Systematic Evolution of Ligands by Exponential Enrichment (SELEX) are typically long (>80 nucleotides) and that obtaining structural information remains time and resource consuming. In response, we explore the utility of aptamer base truncations and in silico docking to improve their translatability into E-AB sensors. Here, we first apply this to the glucose aptamer, which we characterize in solution using NMR methods to guide design and translate truncated variants in E-AB biosensors. We further investigated the applicability of the truncation and computational approaches to four other aptamer systems (vancomycin, cocaine, methotrexate and theophylline) from which we derived functional E-AB sensors. We foresee that our strategy will increase the success rate of translating aptamers into sensing platforms to afford low-cost measurements of molecules directly in undiluted complex matrices.
Read full abstract