Abstract
Aptamers are short oligonucleotides capable of binding specifically to various targets (i.e., small molecules, proteins, and whole cells) which have been introduced in biosensors such as in the electrochemical aptamer-based (E-AB) sensing platform. E-AB sensors are comprised of a redox-reporter-modified aptamer attached to an electrode that undergoes, upon target addition, a binding-induced change in electron transfer rates. To date, E-AB sensors have faced a limitation in the translatability of aptamers into the sensing platform presumably because sequences obtained from Systematic Evolution of Ligands by Exponential Enrichment (SELEX) are typically long (>80 nucleotides) and that obtaining structural information remains time and resource consuming. In response, we explore the utility of aptamer base truncations and in silico docking to improve their translatability into E-AB sensors. Here, we first apply this to the glucose aptamer, which we characterize in solution using NMR methods to guide design and translate truncated variants in E-AB biosensors. We further investigated the applicability of the truncation and computational approaches to four other aptamer systems (vancomycin, cocaine, methotrexate and theophylline) from which we derived functional E-AB sensors. We foresee that our strategy will increase the success rate of translating aptamers into sensing platforms to afford low-cost measurements of molecules directly in undiluted complex matrices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have