The in situ formation of reduced dimensional perovskite layer via post-synthesis ion exchange has been an effective way of passivating organic-inorganic hybrid perovskites. In contrast, cesium ions in Cs-based inorganic perovskite with strong ionic binding energy cannot exchange with those well-known organic cations to form reduced dimensional perovskite. Herein, we demonstrate that tetrabutylammonium (TBA+ ) cation can intercalate into CsPbI3 to effectively substitute the Cs cation and to form one-dimensional (1D) TBAPbI3 layer in the post-synthesis TBAI treatment. Such TBA cation intercalation leads to in situ formation of TBAPbI3 protective layer to heal defects at the surface of inorganic CsPbI3 perovskite. The TBAPbI3 -CsPbI3 perovskite exhibited enhanced stability and lower defect density, and the corresponding perovskite solar cell devices achieved an improved efficiency up to 18.32 % compared to 15.85 % of the control one.