Inorganic nanoparticles can be assembled into superlattices with unique optical and magnetic properties arising from collective behavior. Protein cages can be utilized to guide this assembly by encapsulating nanoparticles and promoting their assembly into ordered structures. However, creating ordered multi-component structures with different protein cage types and sizes remains a challenge. Here, the co-crystallization of two different protein cages (cowpea chlorotic mottle virus and ferritin) characterized by opposing surface charges and unequal diameter is shown. Precise tuning of the electrostatic attraction between the cages enabled the preparation of binary crystals with dimensions up to several tens of micrometers. Additionally, binary metal nanoparticle superlattices are achieved by loading gold and iron oxide nanoparticles inside the cavities of the protein cages. The resulting structure adopts an AB2 FCC configuration that also impacts the dipolar coupling between the particles and hence the optical properties of the crystals, providing key insight for the future preparation of plasmonic and magnetic nanoparticle metamaterials.