Abstract

Inorganic nanoparticles can be assembled into superlattices with unique optical and magnetic properties arising from collective behavior. Protein cages can be utilized to guide this assembly by encapsulating nanoparticles and promoting their assembly into ordered structures. However, creating ordered multi-component structures with different protein cage types and sizes remains a challenge. Here, the co-crystallization of two different protein cages (cowpea chlorotic mottle virus and ferritin) characterized by opposing surface charges and unequal diameter is shown. Precise tuning of the electrostatic attraction between the cages enabled the preparation of binary crystals with dimensions up to several tens of micrometers. Additionally, binary metal nanoparticle superlattices are achieved by loading gold and iron oxide nanoparticles inside the cavities of the protein cages. The resulting structure adopts an AB2 FCC configuration that also impacts the dipolar coupling between the particles and hence the optical properties of the crystals, providing key insight for the future preparation of plasmonic and magnetic nanoparticle metamaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.